2x^2-16x-64=1832

Simple and best practice solution for 2x^2-16x-64=1832 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2-16x-64=1832 equation:



2x^2-16x-64=1832
We move all terms to the left:
2x^2-16x-64-(1832)=0
We add all the numbers together, and all the variables
2x^2-16x-1896=0
a = 2; b = -16; c = -1896;
Δ = b2-4ac
Δ = -162-4·2·(-1896)
Δ = 15424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15424}=\sqrt{64*241}=\sqrt{64}*\sqrt{241}=8\sqrt{241}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{241}}{2*2}=\frac{16-8\sqrt{241}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{241}}{2*2}=\frac{16+8\sqrt{241}}{4} $

See similar equations:

| j+9.9=11.89 | | 7y+12+(3y)=22 | | 3n+6=138 | | 4x+1=10x+3 | | (2^2x)-(2^x)=-6 | | 1.7(14r-4.7)=32.6 | | -2(8x-3)=86 | | 5(4-×)=-10x | | 2m=-6(-7) | | 3(-2-3x)=2(9x+3 | | 3x+8=9x-8 | | t+16.5=17.5 | | 0.40x+0.65(20)=0.20(47) | | -q-11=q+4 | | -4(x+2)+4(2x+7)=20 | | -8(8n+4)=352 | | 14x+80+4x+82=180 | | 4(0.5n-3)=n-0.25(12-8n) | | 10x+14+(2x)=−46 | | 3n+6=136 | | p/2=1.7 | | 8-7(a+1)=9a | | 4+6n=46 | | 3n/6=n+13 | | 2(a-1(=2a+3 | | 2x+4+7(3x-5)=176 | | 5/6c+3/4=11/21 | | 0.8/x=4/4.5 | | 17x+73=153 | | g-2=11 | | 9+n-2+8n=7n-5 | | 3x-3x+4=8x-16-3x |

Equations solver categories